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Selected applications of relatively simple ES were 
presented. In future, this stochastic optimization 
technique should come to further attention within 
the field of celestial mechanics, especially for the 
direct solution of inverse problems. Ever growing 
hardware and software capabilities will support 
this approach. For example, the author plans to 
use ES for improved asteroid modeling within the 
construction of a new solar-system ephemeris [3]. 

In general, evolutionary algorithms comprise the 
two branches genetic algorithms [1] and evolution 
strategies (ES) [4], both of which were invented in 
the 1960s and 1970s. Here we focus solely on ES 
which have seen many improvements within the 
last decades and can now be regarded as a real 
alternative to standard optimization techniques in 
many areas, especially in cases where gradient 
methods like classical least-squares algorithms fail.  
 

Compared to other optimization techniques, ES 
are easy to adapt to diverse problems, because 
one rarely needs any a priori insight into the 
mathematical/physical nature of the optimization 
task. Once implemented, the same algorithm can 
be applied to a wide range of problems without 
substantial changes. The only necessary condition 
for ES to successfully operate on a given specific 
problem is the inherent existence of strong 
causality, which here means that similar causes 
lead to similar results, i.e., there is no (short-term) 
chaotic behavior in the underlying system. 
 

In the following sections we present examples for 
the application of an ES with covariance matrix 
adaptation (ES-CMA) [2]. All strategy parameters 
were chosen empirically here; but this could be 
avoided by the implementation of a Meta-ES, that 
eventually will, in addition to the problem specific 
unknowns, optimize its own strategy parameters 
automatically. 

The goal is to find spherical harmonic coefficients 
cnm and snm up to a given maximum degree nmax 
and order mmax, representing an n x m gravity field 
of a central (celestial) body, e.g. planet Earth. As 
an example, here we solve for a 4x4 gravity field, 
which is equivalent to a 21-d optimization problem. 
 

Earth’s gravity field directly influences the motion 
of an orbiting satellite (test mass). To determine 
the coefficients, a set of N (simulated/measured) 
satellite positions   is given. We search for an 
optimal set of spherical harmonics, leading to 
calculated positions …. Comparing them with the 
simulated ones yields deviations ... .. .. .. .. .. , 
which shall not exceed a chosen threshold value. 
 

Depending on the norm, the performance index Q 
(objective function, or quality) may be defined as   
………………………….. . The termination quality 
was set to .. .. .. .. .. .. ..     , and for N = 90 a 
(1,40)-ES-CMA was realized. The values in the 
round bracket indicate that in each new generation 
there is only 1 parent creating an offspring of 40 
individuals, and only the (mutated) offspring is 
subject to selection afterwards. Fig. 1 illustrates the 
evolution of the unknowns. Adaptation phases to 
escape from local optima are clearly visible. 

Fig. 1: Logarithm of the absolute residual values of the unknowns versus generation number. 

The following table provides final/optimized values 
(all in units of 10-10). Any digits identical with the 
original harmonics (as used within our simulation) 
are in bold print. 

Application #2: satellite orbit from two positions 

We want to find the solution to a seemingly simple 
boundary value problem. Given are two position 
vectors ..   ,  .. , valid at epochs tA, tB (with tB > tA , to 
fix the sense of direction for a satellite‘s motion), 
and a known force field, e.g., a 8x8 gravity field of 
the primary body, cf. fig 2. Thus, we face a non-
Keplerian motion problem (orbit determination). 

Fig. 2: Boundary value problem: given satellite positions, e.g., via observations from ground sites. 

Now, the task is to transform the original boundary 
value problem into an initial value problem, i.e., to 
solve for the correponding initial velocity vector      . 
 

Then, knowing the initial state and arc length (time 
of flight tB – tA ), the orbit between A and B can be 
determined via usual integration methods. There 
exist only 3 unknowns:     ‘s cartesian components. 
Solving this problem via ES does not make use of 
any further theoretical knowledge on celestial 
mechanics (availability of integrals of motion etc.). 
 

We simply have to define a suitable performance 
index, e.g,  …… …..                                               ,  
NI denotes classical numerical integration. Again, 
a (1,40)-ES-CMA was employed for optimization, 
with termination quality set to              ……            . 
Fig. 3 depicts the residuals and quality for a given 
numerical example, the final solution of which was 
found after only 145 generations. It also illustrates 
the start of the optimization via some intermediate 
resulting orbits (generations are gray level coded). 

Fig. 3: Residuals (top left) and quality (down left) vs. generation #, as well as resulting obits (right). 

Logarithm of the absolute residual values of the unknowns 

corresponding quality value Q in km 

Changing the velocity vector at A (larger red plot point) leads to different orbits 
and therefore to different final position vectors at B (larger plot points). The 
corresponding orbit for generation 0 (initial guess) is shown in blue. Intentionally, 
the vector (0, 0, 0)T was not chosen as a simple initial guess for the ES algorithm, 
because this choice would lead to numerical problems with the applied integrator. 
Thus, a somewhat arbitrary but eligible velocity vector (5, 5, 5)T (in km/s) was 
chosen to be the initial guess.  As  force field we applied an 8x8 Earth gravity field. 
A selection of orbits is shown: generation 1 (light gray) till generation 30 (black).  

In a more general application, we demonstrate the 
simultaneous (!) determination of both polynomial 
and periodical time series parameters, all of which 
are allowed to be real-valued (beneficial for an 
efficient representation). Given is a tabulated time 
series            via kmax (not necessarily equidistant) 
data points. 
In our simple example, we fixed a certain set of 
parameters and simulated the data for a number 
of kmax = 100 randomly chosen epochs, cf. fig 4. 

Fig. 4: Simulation of a tabulated time series, using the model                                                         . 

This time we chose a classical performance index, 
namely the least-squares approach, i.e., minimize 
the sum of the squared residuals                      . 
 

The working precision was set to 16 significant 
digits. The termination quality shall be equivalent  
to the precision of the data, therefore                  . 
 

To solve our 14-dimensional optimization problem, 
we used a (1,10)-ES-CMA. All initial amplitudes 
and frequencies were set equal to 1, and all of the 
remaining initial parameter values were simply set 
to zero. Thus, our initial guess represents a single 
harmonic oscillation (sine-wave w/ amplitude = 4). 
It took 7945 generations to find a solution, cf. fig 5. 

Fig. 5: Residuals (top left) and quality (down left) vs. generation #, as well as the resulting amplitude 
spectra superimposed by a depiction of trend and offset  (top right), and resulting signals (down right). 
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initial guess, final solution, as well as 
gray level coded intermediate results 

amplitude spectra were cut at 
an amplitude value of 4, simply 
due to reasons of space 
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