Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

James M Anderson¹, Li Liu¹, Robert Heinkelmann¹, Harald Schuh^{2,1}, Kyriakos Balidakis¹, Susanne Glaser², Maria Karbon¹, Cuixian Lu¹, Julian Andres Mora-Diaz¹, Tobias Nilsson¹, Benedikt Soja¹ anderson@gfz-potsdam.de

> ¹Deutsches GeoForschungsZentrum GFZ ²Technische Universität Berlin

> > EVGA 2015 2015-05-18

DFG Deutsche Forschungsgemeinschaft

Outline

1 D-VLBI and Challenges for D-VLBI to Spacecraft

2 Scheduling Software

3 Processing Software

4 Future Plans

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

Outline

Overview

D-VLBI (differential VLBI)

- Known as *phase referencing* in the astronomical VLBI community for \gtrsim 30 years
- Corrects for errors in the atmosphere (troposphere, ionosphere), instrument (clock, cable delays), and delay model (EOPs) to provide accurate *relative* astrometry
- Absolute position uncertainty limited mostly by atmospheric propagation effects and the positional accuracy of the calibrator
- Velocity accuracy can be far better, limited by SNR, atmospheric effects, and unmodeled source effects

Scientific Goals of this Study

- Demonstrate the potential of D-VLBI for the establishment of frame ties to spacecraft and Solar System dynamical reference frames with the ITRF and ICRF
- Moving targets require different D-VLBI observing and analysis strategies from stationary, astronomical D-VLBI — test various methods to learn what works best
- Perform test observations on different spacecraft orbit types, including LEO, GNSS. Lunar. and Lagrangian orbit

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

D-VLBI and Challenges for D-VLBI to Spacecraft

Geocentric Parallax

Credit: ESA/ATG medialab/ESO/S. Brunier (2004), NASA/Sean Smith (2008), Norman Kuring, NASA/GSFC/Suomi NPP (2012), and USAF (2010)

- Telescopes must point in different directions
- There is effectively no VLBI standard way to observe nearby/moving targets
 - VEX 1.5b1 supports Earth satellite orbital parameters, but not spacecraft outside of Earth orbits
 - Few stations provide a Field System/station interface mechanism supporting moving targets without human intervention crucial for D-VLBI observations (the VLBA is a significant exception here)
 - Need VEX 2.0, Field System, and station interface support in future

• For now, must separately schedule each station with topocentric $(lpha,\delta)$, add correlator hack

FZ Anderson et al.

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

D-VLBI and Challenges for D-VLBI to Spacecraft

Moving Near-Field Targets and Phase Calibrators

• Each station sees the target in a different direction (Geocentric parallax)

- Result: different stations require different phase calibrators
- Depends on projected baseline distance, distance to spacecraft, maximum allowed angular separation
- As the spacecraft moves, the stations must look in different directions
 - Result: stations require different calibrators as a function of time. For GNSS satellites, new calibrators will be needed every few minutes; at L2, new calibrators will be needed on daily timescales
- Many, many phase calibrators and calibrator scans must be used — need an automated system to select and schedule calibrators and targets
 - For an hour-long GNSS D-VLBI experiment with 6 stations, \sim 25 calibrators and \sim 100 scans will be used

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

D-VLBI and Challenges for D-VLBI to Spacecraft

VieVS@GFZ Spacecraft Scheduling Software

• Based on earlier VieVS satellite scheduling software

GFZ Anderson et al.

2015-05-18

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

Example of a VLBA Subarray for GPS Observations

- Need L band receivers for GPS L1 and L2 signals
- Need short enough VLBI baselines for common satellite visibility
- Need high sensitivity for D-VLBI calibrator observations
- VLBA and EVN (European VLBI Network) arrays ideal for test cases

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

Sky Plots for the VLBA Network Example

- 12 minutes of schedule planning time shown
- Blue points: GPS satellites, plotted every 6 minutes
- Red points: all possible phase calibrator sources within angular separation cutoff

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

Calibrator Selection

- Phase calibrator list includes sources from the VLBA Calibrator List (NRAO 2015) (as well as the Radio Fundamental Catalog, Petrov 2015)
- Selection Criteria
 - Angular distance between spacecraft and calibrator, Sun, horizon, ...
 - Position accuracy
 - Absence of source structure
 - Flux density for appropriate baseline length, with spectral index correction to observing frequency
 - Station sensitivities and maximum phase-referencing cycle time (atmospheric coherence time for the target-calibrator separation) used to generate flux-density cutoff limit

flux s flux l flux s flux l Source name rae dee 12h23m39.336605s +46d11'18.60268 11223+4611 1221 + 4640.37 Ο. 46 0.37 0. 21 05 GSEC 0.32 11221 ± 4411 1218+44412h21m27.044660s +44d11'29.67162' 0.16 0.59 0. 49 35 0 26 GSEC 11443 + 25011441 + 25214h43m56.892189s +25d01'44.49069 0.02 O 43 46 0.26 GSEC 0.13 GSEC 11620-4001 1619+49116h20m31 225198s ±49d01'53 25688 52 Ω 74 36 0.15 0.25 GSEC 11656+5321 1655 + 53416h56m39.624167s +53d21'48.77142' 0.10 0 0.10 1710+542 0.19 0.17 0.17 GSEC 11711 ± 5411 17h11m40 504775s +54d11'45 13465 O. 13 11657+5705 1656+571 0.36 32 0.11 GSEC 16h57m20 708933s +57d05'53 50370 11728+0427 1725+044 17h28m24_952724s +04d27 04 91390 0.03 22 GSEC 11734+0926 1732 + 09417b24m59 276097c ±09d26 0.31 54 GSEC 1742.172 CCE

 Links to calibrator images and data to be provided when run interactively

Anderson et al.

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

Plots for Scheduling Results

- 60 minutes of observing time shown here
- One plot per station, showing detailed target locations for each scan and the calibrators used for all stations
- Allows visual inspection of target–calibrator geometries to verify software-based selections

Scheduling Output

Scheduling file

2015		10	10	0	0.00	ED ITTEL	TA DITES	10011464	
2015	5	10	10	0	0.00	ED-ULBA	LA-VLBA	1221+464	PP
2010	5	10	10		0.00	FD-UT PA	DIFTOWN	1221+464	44
2015	6	10	10		0.00	FD-UT BA	OU-ULBS	1221+464	44
2015	5	10	10	õ	0.00	I D-VLDA	WD-UT PA	1221+464	44
2015	5	10	10		0.00	LA-ULDA	DIFTOWN	1221+464	44
2015		10	10	č	0.00	LA-ULDA	OU-UT PA	1221+464	44
2010	5	10	10		0.00	VD-1/T DA	DIFTOWN	1221+464	44
2015	6	10	10		0.00	VD-UTBA	OU-ULBA	1221+464	44
2015	5	10	10	~	0.00	DIFICUN	OU-UT BA	1221+464	44
2015	6	10	10		16.00	DIFTOWN	OV-VLBA	DC19	44
2015	5	18	10	0	16.00	DIFTOWN	OV-VLBA	PG19	-
2016	5	10	10	ŏ	16.00	DIFTOWN	OV-VIDA	DC1 9	
2015	6	1.0	10		16.00	DIFTOWN	OV-VLBA	PG19	
2015	5	18	10	0	16.00	DIFTOWN	OV-VLBA	PG19	
2015		10	10		16.00	DIFTOWN	OV-VIBA	PG19	
2015	5	18	10	0	16.00	DIFTOWN	OV-VLBA	PG19	-
2015	6	10	10	ő	16.00	DIFTOWN	OV-VIDA	PC1 9	
2015	6	1.0	10		16.00	DIFTOWN	OV-VLBA	PG19	-
2015	5	18	10		16.00	DIFTOWN	OV-VLBA	PG19	
2015	6	10	10		27 00	FD-ULBA	LA-ULBA	1221+464	
2015	5	1.0	10		27.00	FD-VLBA	KD-VLBA	1221+464	99
2015	5	18	10		27 00	FD=VLBA	PLETOWN	1221+464	99
2015	6	1.0	10	0	27 00	FD-VLBA	OV-VIBA	1221+464	99
2015	5	18	10		27 00	LA-ULBA	KD-VLBA	1221+464	99
2015	6	10	10		27 00	LA-ULBA	DIFTOWN	1221+464	99
2015	5	10	10		27.00	LA-VIDA	OV-VLBA	1221+464	44
2015	5	18	10	0	27 00	KD-VLBA	PIETOWN	1221+464	99
2015	6	10	10	0	27 00	KD-VLBA	OV-VI BA	1221+464	99
2015	5	18	10		27 00	DIFTOWN	OV-VLBA	1221+464	99
2015	5	18	10	0	43.00	DIETOWN	OV-VLBA	PG19	99
2015	5	18	10	0	43.00	PIETOWN	OV-VLBA	PG19	=0
2015	5	18	10	0	43.00	DISTOWN	OV-VLBA	PG19	-
2015	5	18	10	0	43.00	DIETOWN	OV-VLBA	PG19	=0
2015	5	18	10	ő	43.00	PIETOWN	OV-VLBA	PG19	sc
2015	5	18	10	0	43.00	DIETOWN	OV-VLBA	PG19	
2015	5	18	10	0	43.00	PIETOWN	OV-VLBA	PG19	50
2015	5	18	10	ő	43.00	PIETOWN	OV-VLBA	PG19	sc
		_	_						

- Currently outputs .SKD and internal format files
- Will also develop output to keyin files for NRAO SCHED
 - Supports VLBA non-sidereal tracking
 - Support for SPICE data for scheduling non-sidereal tracking
 - VEX and .v2d support
 - Support for multiple phase centers
 - For times when in-beam calibration can be applied
 - GNSS in-beam calibration opportunity about once per hour per station for a 25 m diameter station and reasonable selection criteria

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

D-VLBI Processing Software Modifications: ATMCA

Based on Figure 1 of Fomalont & Kogan (2005). T indicates the target, and numbers indicate calibrator sources.

Different panels show different relative source orientations.

- For nearby spacecraft, multiple calibrators are necessary for D-VLBI because of Geocentric parallax and spacecraft motion
- ATMCA is an AIPS task to calculate and apply phase referencing calibration from multiple calibrators (see AIPS Memo 111, Fomalont & Kogan 2005)
- Colored lines have been overlaid to simulate spacecraft tracks viewed by three different stations
- Calibrator-target orientation categories can be different for different stations and change with time

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

Processing Software

ATMCA Modifications for Nearby/Moving Spacecraft

- Target direction different for each station
 - Target position must be calculated from satellite ephemerides rather taking the fixed (α, δ) coordinates in the AIPS SU (source) table.
- Target moves as a function of time
 - Calibration gradient on sky results in different calibration values at different locations
 - Phase calibration no longer constant for each scan
- Calibration algorithm (linear interpolation, 2-D gradient, assume only elevation gradient present, ...) may be different for each station, and may change with time
 - $\bullet\,$ Original software has user select a single algorithm to use for all stations and times
- Different calibrator groups used for different directions in the sky the software should automatically select the appropriate calibrators to use from all available observations
- Development still in progress...

Future Plans

- Finish initial development and debugging
- Schedule, observe, process, and analyze test observations
 - Test D-VLBI and our software's performance for different spacecraft orbit types and observing frequencies
 - GNSS for nearby spacecraft
 - RadioAstron for distances out to roughly the Lunar orbit
 - Gaia for the L2 orbits
- Software tweaking
 - Improve calibrator selection criteria weighting
 - Add checks for in-beam opportunities
 - Add tuning option for maximizing velocity measurement accuracy (different calibrator selection, satellite repetition frequency)
- Extend automated VLBI processing scripts from the astronomical community for spacecraft D-VLBI

GFZ Anderson et al.

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

Future Plans

The End

Thank you for your attention

Acknowledgments: The presented research was done within the project Ties between kinematic and dynamic reference frames (D-VLBI) (SCHU 1103/4-1) as part of the DFG Research Unit Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space funded by the German Research Foundation (FOR 1503).

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

References I

- ESA/ATG medialab/ESO/S. Brunier. 2004. Gaia Mapping the Stars of the Milky Way, URL: http://www.esa.int/spac einimages/Images/2004/05/Gaia_mapping_the_stars_of_the_Milky_Way (visited on 10/15/2014)
- Fomalont, E., & Kogan, L. 2005. ATMCA: Phase Referencing using more than one Calibrator, AIPS Memo 111 (NRAO)
- NASA. 2012. Blue Marble, URL: http://visibleearth.nasa.gov/view_cat.php?categoryID=1484 (visited on 05/11/2015)
- NASA/Sean Smith. 2008. Super Moon, URL: http://asd.gsfc.nasa.gov/blueshift/index.php/2015/02/12 /no-mardi-gras-under-a-full-moon/ (visited on 05/11/2015)
- Norman Kuring, NASA/GSFC/Suomi NPP. 2012. The View from the Top, URL: http://visibleearth.nasa.gov/view.php?id=78349 (visited on 05/11/2015)
- NRAO. 2015. The VLBA Calibrator List, URL: http://www.vlba.nrao.edu/astro/calib/ (visited on 05/12/2015)
- Petrov, L. 2015. Radio Fundamental Catalog, URL: http://astrogeo.org/rfc/ (visited on 05/12/2015)
- USAF. 2010. GPS Block IIIA Satellite, URL: http://en.wikipedia.org/wiki/File:GPS_Block_IIIA.jpg (visited on 10/15/2014)

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

References

More Plots for Scheduling Results

GF7

Helmholtz-Zentrum

POTSDAM

VGA 2015

2015-05-18

- 30 minutes of observing time shown here
- One plot per station showing detailed target locations for each scan and the calibrators used
- Allows visual inspection of target–calibrator geometries to verify software-based selections

DFG Forschergruppe Referenzsysteme

Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

Extras