Work on a New Solar-System Ephemeris: Status Report

Data Collection

The construction of an ephemeris comprises regular checks on the truth via planetary observations. We collected any kind of such data (e.g., historical optical transit observations, cf. Fig. 5) that are public available. Today, a huge amount of very precise tracking data of planetary orbiters or landers enables a reliable verification of the planetary positions.

In future, with the successful launch of the GAIA spacecraft, dedicated to astrometry, an even more precise direct localization of solar-system objects, will become available, e.g., for hundred thousands of asteroids

Outlook

The realization of a truly ephemeris requires many additional steps, e.g., refinement of the dynamical model: simultaneous integration of the ODE for TT-TDB, taking into account additional minor bodies in the solar system (vast number of smaller asteroids via ring model(s), and possibly a few trans-Neptunian objects), employment of the lates lunar libration model, etc.
introduction of all kinds of available planetary observations in combination with consistent data reduction models,
parameter estimation with appropriate data weighting schemes
enhancement of the efficiency of the numerical computation.
The last issue is important as we intend to apply new strategies fo parameter estimation apart from classical least-squares adjustments

References

Müller et al. (2014) Lunar Laser Ranging and Relativity. In: Frontiers in Relativistic Celestial Mechanics - Applications and Experiments. Sergei M. Kopeikin (Ed.), De Gruyter, pp.103-156, in press

Acknowledgements

This research was funded by the German Research Foundation (DFG), within the research unit FOR 1503 "Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space".

