Non-tidal atmospheric loading corrections in global reference frame computations - A case study using SLR -

Mathis Bloßfeld¹, Ole Roggenbuck², Manuela Seitz¹, Detlef Angermann¹, Daniela Thaller²

¹Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Germany ²Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt am Main, Germany

e-mail: blossfeld@dgfi.badw.de

Motivation I

□ DFG Research Unit "Reference Systems" (FOR 1503)

FOR 1503 comprises a joint project of DGFI and BKG which investigates nonlinear station motions based on an extended parameterization (sine-/cosine-terms with periods of 0.5/1yr) and on **different geophysical fluid models**.

	Deformation			Gravity		
	Atmo.	Ocean	Hydro.	Atmo.	Ocean	Hydro.
GGFC	Х	Х	х	-	-	-
NASA	Х	Х	Х	-	-	-
TU Vienna	Х	-	-	Х	-	-
Uni Strasburg	X / X	-	Х	Х	-	Х
GFZ	(X)	(X)	(X)	Х	х	(X)

□ In this presentation, the non-tidal atmospheric loading (NT-ATML) site displacement model of NASA and gravitational perturbation model of GFZ will be investigated.

Motivation II

Furthermore,

- Unified Analysis Workshop 2011 → ILRS Pilot Project 2012
 Call for space geodetic solutions corrected for non-tidal atmospheric loading
 (site displacement and gravitational perturbation) at the observation level.
- □ ITRF2013 Call for Participation (CfP)

"... the individual TC solutions will be corrected for non-tidal atmospheric loading during the ITRF computation, using a unique loading model provided by the IERS Global Geophysical Fluid Center (GGFC)."

This correction will be applied at the **normal equation / parameter level**.

- → What is the impact of the NT-ATML corrections on geodetic parameters?
- \rightarrow Does the application at different levels cause any inconsistencies?

ĊGE

Site displacements due to NT-ATML

The NT-ATML corrections of more than 50% of the SLR stations have an annual amplitude larger than 2 mm in the height component.

Gravitational perturbation due to NT-ATML

□ NT-ATML corrections comprise annual periods with significant amplitudes

□ These corrections are only important for geodetic space techniques which observe LEOs/MEOs such as SLR, DORIS (altitude of GNSS satellites is too high)

coefficient	<i>C</i> ₂₀	<i>C</i> ₂₁	<i>S</i> ₂₁	C ₂₂	<i>S</i> ₂₂
ampl. (1 yr)	8.95E-11	5.29E-11	1.22E-10	7.54E-11	4.07E-11
•					

CGE

bkg

5

In order to quantify impact of NT-ATML on global reference frames and EOP, three test solutions using SLR data are computed:

- conventional TRF; no NT-ATML corrections applied
- TRF + NT-ATML corrections applied <u>a posteriori</u> (only site displacements at normal equation / parameter level)
 - site displacements are a mean of all displacements during a week
 - consequently only displacements at observation epochs should be used (for ITRF2013 processing, this information is not available)
- TRF + NT-ATML corrections applied at observation level (site displacements + gravitational perturbations \rightarrow <u>complete</u> effect)
 - corrections are applied at observation epochs

AG REFAG Symposium, 13. Oktober 2014, Luxembourg

CGE

SLR blue

sky effect

Solution setup

The computed global TRFs ...

- □ contain observations to LAGEOS 1/2 and Etalon 1/2 (weighted by iterative VCE),
- are computed for a time interval between 2001.0 and 2013.0,
- \Box contain station coordinates, velocities (60 stations \rightarrow 360 parameters),
- □ contain daily EOP values (terrestrial pole coordinates; 13128 parameters),
- have an orientation realized through an NNR condition w.r.t. a selected subnet of the SLRF2008 (updated),
- □ contain reduced orbit parameters and station-dependent biases.

NT-ATML corrections at normal equation level

Impact on geodetic datum of global TRFs

- □ Translations are very small (< 0.20 mm), rotations are smaller than 1.0 mm
- Different treatment of NT-ATML corrections cause scale difference of ca. 1.8 mm (this might be caused by gravitational perturbation and blue sky effect)
- □ Rates are nearly zero for all parameters

Impact on internal accuracy of TRFs

CGE

bkg

- $\Box l^T P_{ll} l$ and $\hat{v}^T P_{ll} \hat{v}$ are dominated by the EOP (13128 EOP vs. 360 station parameters)
- □ differences in the coordinate / velocity STDs are very small (<0.05 mm)

Impact on station coordinates / velocities I

CGE (bkg

DFG Forschergrupp Referenzsysteme

Impact on station coordinates / velocities II

CGE (bkg

DFG Forschergrupp Referenzsysteme

12

Impact on station coordinates / velocities III

- horizontal coordinate differences show no systematic change between a posteriori and complete correction
- height differences show a systematic shift into positive domain in the southern and northern hemisphere
 - \rightarrow scale factor!

Impact on terrestrial pole coordinates I

IAG REFAG Symposium, 13. Oktober 2014, Luxembourg

- $\Box \Delta x_p$ time series agree well w.r.t.
- $\Box \Delta y_p$ time series of a posteriori and complete corrected TRF show small systematic drift w.r.t conventional TRF

Improvement of STDs:

\triangle STD(x_p)	\triangle STD(y_p)	
0.18 μs	3.4 μs	
0.17 μs	3.4 μs	

Impact on terrestrial pole coordinates II

AG REFAG Symposium, 13. Oktober 2014, Luxembourg

Summary

The application of the gravitational perturbation is only necessary for LEOs/MEOs (\rightarrow correction only important for DORIS and SLR)

The different applications of NT-ATML corrections

- → at <u>observation equation level</u> (site displacement + gravitational perturbation at observation epoch) and
- → at normal equation / parameter level (only weekly mean site displacement) cause
- □ a difference of ca. 1.8 mm in the scale between the a posteriori corrected TRF and the complete corrected TRF (SLR blue sky effect)
- □ an small improvement in the stochastic model (improved STDs) if the complete correction is applied at the observation equation level
- □ systematic differences with annual period in the terrestrial pole coordinates (different amplitudes in x_p , y_p and a phase shift of ca. 180 degree in y_p)

Outlook

Future investigations:

- Separation of SLR blue sky effect, effect due to gravitational perturbation and effect of the application at different levels
- □ Evaluation of other model combinations (currently NASA and GFZ have been used)
- Investigation of the hydrological and oceanic non-tidal loading (site displacement and gravitational perturbation)
- □ Application of non-tidal corrections to DORIS

For ITRF2013 computation:

- □ GGFC NT-ATML model will be used for ITRF2013 computation
- □ Further investigation of NT-ATML effect on station coordinates/velocities
- CGE bkg Referenzsysteme

Thank you very much for your attention!

Non-tidal atmospheric loading corrections in global reference frame computations - A case study using SLR -

Mathis Bloßfeld¹, Ole Roggenbuck², Manuela Seitz¹, Detlef Angermann¹, Daniela Thaller²

Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Germany Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt am Main, Germany

e-mail: blossfeld@dgfi.badw.de

