How to deal with non-linear station motions?

Ralf Schmid, Mathis Bloßfeld, Detlef Angermann

Deutsches Geodätisches Forschungsinstitut (DGFI) München e-mail: schmid@dgfi.badw.de

Motivation (1)

Current station parameterization (coordinates and **velocities**) to realize long-term reference frames can only cover **secular station motions** (caused, e.g., by plate tectonics, post-glacial rebound, etc.)

Motivation (2)

Observed (GPS) vs. modeled (atmospheric loading derived from NCEP data, hydrological loading from GLDAS) weekly height variations for Wettzell:

Unmodeled effects like atmospheric or hydrological loading cause **periodic signals** in coordinate time series. Available models are still not accurate enough.

Motivation (3)

Episodic effects (e.g., local hydrological effects or post-seismic deformation) can neither be covered by linear station velocities nor by periodic signals

Referenzsysteme

Strategies to deal with non-linear station motions

- Geodätische Woche, 10. Oktober 2013, Essen
- Modeling
 - improved modeling of global geophysical fluids (atmosphere, oceans, hydrology, etc.) that are mainly responsible for periodic station motions
 - ideal solution, long-term objective
- Parameterization
 - set up parameters like annual and semi-annual sine functions for the station coordinates (besides linear station velocities)
 - interim solution
- Sampling
 - estimation of epoch reference frames in addition to multiyear reference frames
 - only possibility to approach episodic effects

Parameterization

Only necessary, as long as (loading) models have deficiencies and, therefore, an interim solution, but...

- calls attention to the general problem
- gives feedback to the modeling approach
- helps to categorize stations with respect to sub-annual stability
- interesting as regards the necessary datum constraints

So far, only **indirect estimates** from final coordinate time series for the periodic signals available. Direct estimation important, as other parameters could absorb parts of the signal.

Significance of (semi-)annual station motions

Derived from **differences between epoch and multi-year reference frames** (combined GPS, SLR and VLBI solutions; 1994-2006; 335 stations with 528 sets of positions)

Reduction of station RMS

DFG Forschergruppe Referenzsysteme

4%

(Semi-)annual station motions (1)

Geodätische Woche, 10. Oktober 2013, Essen

Hofn (Iceland):

- time series of differences between epoch (ERF) and multi-year reference frames (MRF)
- trends probably due to deficiencies in the velocity estimates of the MRF
- semi-annual signal not always significant
- strong annual signal in the up component
- different amplitudes for consecutive intervals, but good phase agreement

9

(Semi-)annual station motions (2)

Yakutsk (Russia):

- strong annual signal in the up component
- annual signals not able to cover episodic effects contained in the horizontal components

Sampling

- epoch-wise combination of different space geodetic techniques (GPS, SLR, VLBI)
- epoch reference frames (ERFs) only contain station positions (no velocities!)
- datum realization:
 - origin: SLR
 - orientation: NNR (GPS)
 - scale: SLR/VLBI
- adequate number of local ties per epoch necessary

Epoch reference frames

rates

(1 d, ..., 28 d): compromise between datum stability and the possibility to sample short-term effects

> DFG Forschergrupp Referenzsysteme

Epoch vs. multi-year reference frames

	ERF	MRF
Parameterization	<i>X(t_i)</i>	X(t _o), dX/dt
Stability	short-term	long-term
Non-linear station motions	frequently sampled	suppressed
Station network	sparse	dense
Number of local ties	low	high
Latency (e.g., after earthquakes)	few epochs	≥ 2.5 years

Summary

- Geodätische Woche, 10. Oktober 2013, Essen
- Stations currently parameterized with coordinates and corresponding velocities for TRF computations
- Station velocities cover secular station motions, but neither periodic nor episodic effects
- Parameterization of (semi-)annual station signals can serve as an interim solution, as long as geophysical fluid models are imperfect
- (Semi-)annual signals are significant; the amplitude of the up component exceeds the cm level for about 15% of the stations
- Epoch reference frames (ERFs) can sample both periodic and episodic effects
- Sampling rate is a compromise between datum stability and the temporal resolution of the station motion
- ERFs are available with short latency (e.g., after earthquakes)

