
13-0402  
 

Lunar Laser Ranging - What is it Good for? 
 

F. Hofmann (1), J. Müller (1,2), L. Biskupek (1),  E. Mai (1), J. M. Torre (3) 
(1) Institut für Erdmessung, Leibniz Universität Hannover 
(2) QUEST – Centre for Quantum Engineering and Space-Time Research 
(3) Univ.Nice Sophia Antipolis, CNRS, IRD, Observatoire de la Côte d’Azur, 
Géoazur UMR 7329, 2130 route de l’Observatoire, 06460 Caussols, France 
mueller@ife.uni-hannover.de 

 
Abstract. In 1969, a new era for studying Earth-Moon dynamics has started. Since the first returns 
of laser pulses sent from observatories on Earth to reflector arrays on the Moon, a new space 
geodetic technique – Lunar Laser Ranging (LLR) – provides an ongoing time series of highly 
accurate Earth-Moon distance measurements. This data can be used to carry out relativity tests and 
to potentially support various GGOS objectives.  
LLR data analysis is realized at the cm level of accuracy, for which the whole measurement process 
is modeled at appropriate post-Newtonian approximation, i.e., the orbits of the major bodies of the 
solar system, the rotation of Earth and Moon, signal propagation, but also the involved reference 
and time systems.  
By analysing the 43-year record of range data, LLR is able to provide, among others, a dynamical 
realization of the International Celestial Reference System, parameters related to the selenocentric 
and terrestrial reference frames, (long-periodic) Earth Orientation Parameters as well as 
quantities testing General Relativity (e.g. strong equivalence principle, Yukawa-like perturbations 
or time-variability of the gravitational constant).  
We will present results for relativistic parameters as well as first results from our software 
extension, which is able to generate and analyse simulated LLR data. 

 Introduction  

The first retroreflector for LLR was deployed on the Moon by the Apollo 11 astronauts on July 21, 
1969. With Apollo 14 and Apollo 15 in the early Seventies, two further reflector arrays were 
brought onto the Moon by US missions. Unmanned Soviet missions, Luna 17 and Luna 21, 
completed the lunar network by 1973 with their lunar rovers Lunokhod 1 and 2. The unique time 
series of highly accurate Earth-Moon distance measurements was assembled by just a few 
observatories on Earth. Currently, four active LLR sites track the Moon on a routine basis: the 
McDonald Observatory in Texas, USA, the Observatoire de la Côte d' Azur, France, the APOLLO 
site in New Mexico, USA and the Matera Laser Ranging station in Italy. 
LLR tracking is quite similar to SLR (Satellite Laser Ranging) tracking. A series of short laser 
pulses is sent from an observatory towards a reflector on the Moon. The weak reflected signal is 
registered at the observatory. The round trip travel times of the laser pulses are measured and 
combined to a so-called normal point (NP) which is used in the analysis. From 1970 to 2013, about 
18100 NPs were collected. The annual distribution is shown in figure 1. In addition, there are also 
few measurements from the observatories at Orroral and Wettzell which are not shown here. 
Over long periods often only one observatory carried out LLR measurements, which is related to 
the difficulty to get successful lunar returns. The measurement is affected by a huge signal loss due 
to beam divergence from the outgoing beam at the telescope and especially from the reflector array 
on the Moon in combination with the large distance and atmospheric effects. 



 

The Institut für Erdmessung (IfE) LLR analysis model consists of a collection of sophisticated 
software modules at the cm-level of accuracy. The whole measurement process is modeled at 
appropriate post-Newtonian approximation, including the orbits of the major bodies of the solar 
system, relativistic precession of the Moon, signal propagation, but also the involved reference and 
time systems as well as the time-variable positions of the observatories and reflectors. Most 
prominently, LLR is one of the best tools to test General Relativity within the solar system. It 
allows for constraining gravitational physics parameters related to the strong equivalence principle, 
Yukawa-like perturbations, preferred-frame effects, or the time variability of the gravitational 
constant. In this paper, we focus on Yukawa-like perturbations and study the benefit when adding 
further ground stations on Earth to the LLR network. 
 
 

 
Figure 1. NP distribution with respect to LLR observatories covering the years 1970 to 2013 

 
 
Relativity tests with LLR - Yukawa like perturbations 
 
The gravitational acceleration between two bodies decreases proportional to the inverse square of 
the distance between the bodies. This is also called Newton’s inverse square law. A possible 
violation can be parametrized by the introduction of an additional Yukawa term in the model for the 
combined gravitational field of Moon and Earth (Adelberger, 2001): 
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EM  and MM  denote the masses of Earth and Moon, G  the gravitational constant, α  and λ  are the 

coupling constant and interaction range, respectively. The interaction range is fixed to 380000 km 
while the coupling constant is estimated in the LLR analysis. Therefore, an additional differential 
acceleration yuk Myuk Eyuk∆ = −r r r    between Earth E  and Moon M  is introduced in the equations of 
motion: 
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The power spectrum of the effect of such an additional acceleration term on the Earth-Moon 
distance is shown in figure 2, where the strongest signals appear at frequencies of the anomalistic 
and synodic months and of their linear combinations.  
 
The estimation of the coupling constant α  yields 
 

11( 1.8 0.5) 10−α = − ± × . 
 
The given accuracy is the 3σ  value, i.e., 3 times the standard deviation which is obtained in the 
least squares adjustment. The possible non-null result should not be misinterpreted. We do not 
consider this result as a significant deviation from the predictions of general relativity, where 0α = . 
The given error might be too small due to effects from possible systematics or insufficient 
modelling. The Yukawa potential introduces an additional precession of the lunar orbit (Adelberger, 
2001), analog to the geodetic precession. If the Yukawa term is estimated together with a parameter 
for the geodetic precession, we obtain, for the coupling constant α , a value of 
 

11( 0.6 1.8) 10−α = − ± × , 
 
which is highly correlated with the geodetic precession. This result seems to give a more realistic 
error estimation for α . 
An overview about the results for other relativistic quantities which were estimated within our LLR 
analysis is given in table 1. Some discussion on these parameters is given in Müller et al. (2014) 
and the references therein. 
 

 
Figure 2. Power spectrum of the difference in the Earth-Moon distance with and without a 
perturbation due to an additional Yukawa term with 111.8 10−α = × . Here, „syn” denotes the synodic 
frequency and „anomal” the anomalistic frequency. 
 



 

Table 1. IfE results for various relativistic parameters and estimated „realistic” errors 
Parameter Results 

Nordtvedt parameter η (test of the strong equivalence principle) 4(2.0 4.0) 10−± ×  

Time variable gravitational constant /G G  [yr-1] 
                                                           /G G  [yr-2] 

13(1.4 1.5) 10−± ×  
15(4.0 5.0) 10−± ×  

Geodetic precession (difference to predicted value of 1.92’’/cy in 
general relativity) [´´/cy] 

2( 0.6 1.0) 10−− ± ×  

Metric parameter 1γ −  (space curvature) 3(3.0 4.0) 10−± ×  
Metric parameter 1β−  (non-linearity) 

1β−  using sin4 3Cas iη = β− γ −  with 5
sin 1 (2.1 2.3) 10Cas i

−γ − = ± ×  

3(1.7 2.0) 10−± ×  
4(0.6 1.1) 10−± ×  

Preferred-frame within special relativity 1 0 1ζ − ζ −  4( 0.5 1.2) 10−− ± ×  
Preferred-frame effect  1α  
                                     2α  
(coupled with velocity of the solar system) 

5(3.0 3.0) 10−± ×  
5(2.0 2.0) 10−± ×  

Preferred-frame effect  1α  
(coupled with dynamics within the solar system) 

3(1.6 3.0) 10−± ×  

Influence of dark matter gcδ  [cm/s2] 
(in the direction of the galactic center, equivalence principle test) 

14(0.0 2.0) 10−± ×  

 
 
Simulation results 
 
The IfE LLR analysis program was extended to simulate and analyze artificial laser ranging data to 
the Moon. In this study, we simulated the effect of further ground stations on selected parameters. A 
basis solution was computed with the simulation of data from four existing observatories (APOLLO, 
McDonald, Grasse, Wettzell) to the five usual lunar retroreflectors. The assumptions for the 
simulation were 

• White noise, specifically such that the annual wrms becomes ~ 3-5 cm, 
• 40 years of data, homogeneously distributed (non-realistic, compare figure 1), 
• Lunar elevation above 40°,  
• Case 1: only reflectors which are on the lunar night side, 
• Case 2: all reflectors are used. 
 

With the simulated data, a standard LLR analysis was carried out with the following estimated 
parameters:  

• Initial positions and velocities for lunar orbit and rotation, 
• Reflector and station coordinates (one site fixed), 
• Some lunar gravity field coefficients, tidal parameters (lunar k2, time delay D), 
• Mass of the Earth-Moon system. 
 

In this paper, the solution with four ground stations is called “basis solution”. In addition to the four 
basis observatories, LLR data is simulated for one further ground station. In one case, the station is 
located in the northern hemisphere (e.g. in Japan) and, in another case, it is located in the southern 
hemisphere, e.g. in South Africa, where the old French OCA system will be installed, see 
Combrinck and Botha (2014). The geographical distribution of the chosen basis stations and the 
additional ground stations is shown in figure 3. 



 

 
 

Figure 3. Distribution of 4 existing LLR ground stations of the basis solution (green dots) and 2 
simulated additional ground stations (red dots) in the northern (N) and southern (S) hemisphere 
 
The results for the basis solution as well as for the solutions with an additional observatory in the 
northern (N) and southern (S) hemisphere is shown in table 2 (test case 1) and table 3 (test case 2). 
The comparison is based on the single standard deviations of the above mentioned parameters, 
which are obtained from the fit. 
The increasing accuracy from case 1 to case 2 implies, that it is advisable to observe as many 
reflectors as possible at a LLR session, if possible on the non-illuminated and illuminated area of 
the lunar disk. Adding a new observation site in the ”opposite” northern or southern hemisphere 
leads to an improvement of about 10%-15% for the considered parameters in this simulated test 
case. This result is strongly affected by the assumed measurement accuracy of the new station. Here, 
the accuracy was chosen as the average measurement accuracy of the basis observatories.  A higher 
accuracy of a new station would further improve the solution. 
The resulting accuracies of the solution with the additional southern station seem to be slightly 
better than the solution with an additional northern station. In the simulation, this is mainly caused 
by a better coverage of the whole lunar orbit from a southern station. Figure 4 shows how the NP 
distribution depends on the lunar declination. With the given elevation mask, the southernmost 
lunar declinations can only be reached by a southern station. Furthermore, the simulation actually 
does not account for atmospherically caused loss of accuracy of observations at lower elevations. In 
this case, an additional southern ground station has, in combination with the northern sites, the 
advantage, that the full lunar orbit can be observed under high elevations with the highest accuracy.  

 
Figure 4. NP distribution w.r.t. lunar declination and a minimum measurement elevation of 40° 



 

Table 2. Standard deviations for reflector coordinates, initial lunar rotation angles and mass of the 
Earth-Moon system (case 1, only reflectors in non-illuminated area of the lunar disk)  

  basis solution basis + N basis + S 
Xref x [mm] 242 216 195 

y [mm]   72   63   60 
z [mm] 243 219 204 

Euler angles φ [as] 1.15 1.03 0.97 
θ [as] 0.012 0.010 0.010 
ψ [as] 1.15 1.03 0.97 

GME+M [km³s-²] 46.73 10−×  46.01 10−×  45.34 10−×  
 
Table 3. Like table 2 but for case 2, i.e., all reflectors are used. 

  Basis solution Basis + N Basis + S 
Xref x [mm]   73   65   61 

y [mm]   23   21   20 
z [mm] 132 118 114 

Euler angles φ [as] 0.63 0.57 0.53 
θ [as] 0.006 0.006 0.005 
ψ [as] 0.63 0.57 0.53 

GME+M [km³s-²] 41.45 10−×  41.28 10−×  41.22 10−×  

Summary 

The ongoing LLR activities at IfE have been reported in this paper. We updated our analysis 
software including new measurements from 2012 and 2013 and estimated a new IfE standard 
solution for a multitude of relativistic parameters, see table 1. We discussed a possible Yukawa-like 
perturbation in some detail, where we did not obtain a significant deviation from the prediction of 
general relativity. We also extended the software for generating simulated LLR data and showed the 
positive effect of a further ground station in the northern or southern hemisphere. 
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